Comparision of Optimization Methods in Machine

Learning
Tanmay Gupta
12/4/2018

Introduction

In this paper, I will be evaluating a few optimization techniques that are used in the context of Machine
Learning. In our Introduction to Optimization Class, we have covered the mathematical basis of L-BFGS,
DFP, Newton Method, and the Conjugate Gradient method among a number of other techniques. It is a well
known fact that these numerical techniques are widely used in the world of machine learning. In a world
where data is becoming more abundant and cheaper by the day, the data rules which algorithm is best for a
particular problem. In light of that, the prupose of this paper will be to evaluate the different techniques
on the basis of the time it takes them to minimize a given loss function on 3 types of data the details of
which I will be covering in the coming few pages. I will be evaluating the performance of the Binary Logistic
Regression classifier, a model that is popular for its effectiveness in classifying data into categories.

Optimizers Evaluated

o Conjugate Gradient (CG): Conjugate Gradient which was implemented using scipy.optimize.fmin_ cg.
Scipy.optimize is a library in python that specializes in optimization of functions.

o Truncated Newton (TNC): Truncated Newton as implemented fmin_ tne function of the library.

« BFGS: Broyden—Fletcher—-Goldfarb—Shanno method, as implemented in fmin_ bfgs.

e L-BFGS: Limited-memory BFGS as implemented in fmin_1_bfgs b.

o Newton-CG (NCG): Newton Conjugate Gradient as implemented in fmin_ncg.

Data Used

The data that I will be working with is a simulated data set, with 10000 rows and 1001 columns, including a
constant term, as often used in regression. I will be preparing 3 seperate sets of data with varying correlation
among the columns of data, ranging from near 0 to near 0.8 in some extreme cases. The idea is to evaluate
the performance of different optimizers for different types of data that we can find in the real world.

The following code generates the data that we will be using for this paper.

n_samples, n_features = 10 ** 4, 10 *x* 3

np.random. seed (0)

X = np.random.randn(n_samples, n_features)

w = np.random.randn(n_features)

y = np.sign(X.dot(w))

X += 0.8 * np.random.randn(n_samples, n_features) # add noise

X+= corr # this makes it correlated by adding a constant term

X = np.hstack((X, np.ones((X.shapel[0], 1)))) # add a column of ones for intercept

Functions Used

The optimization code is primarily written in Python while the code to present the visualizations are written
in R and document was created using R Markdown.

In the code below, we will be defining a few functions that we will be using for the purpose of Optimization.
I have defined 3 functions:

Phi: To represent the logistic regression function. The function is the standard logistic regression function.

1

=1

def phi(t):
logistic regression function
idx =t >0
out = np.empty(t.size, dtype=np.float)
out[idx] = 1. / (1 + np.exp(-t[idx]))
exp_t = np.exp(t[~idx])
out[~idx] = exp_t / (1. + exp_t)
return out

Loss: The purpose of any optimization algorithm is to minimize a certain function. In the context of
machine learning, the purpose is then to minimize the loss function of a certain algorithm with respect to the
coefficients of the model given some data. In our case, we will be minimizing the log-loss function, which
takes the form:

—t
1og(¢(t)):{ log(l-i—et) t>0
t—log(t+e€') t<0

def loss(w, X, y, alpha):

loss function to be optimized. In our case, this will be the logistic loss function

z = X.dot(w)

yZ =y * z

idx = yz > 0

out = np.zeros_like(yz)

out[idx] = np.log(l + np.exp(-yz[idx]))

out[~idx] = (-yz[~idx] + np.log(l + np.exp(yz[~idx])))

out = out.sum() + .5 * alpha * w.dot(w)

return out

Gradient: This function evaluates the gradient of the loss function and is used in nearly all the optimization
techniques in this paper. This function, takes the form of:

Viog(e(t)) = yXT - (6(y(X -w)) — 1) + aw

def gradient(w, X, y, alpha):
gradient of the loss function
z = X.dot(w)
z = phi(y * z)
z0 = (z - 1) *y
grad = X.T.dot(z0) + alpha * w
return grad

Setting up Initial Experiment

I will be setting up an initial experiment with a 5 x 5 matrix with logistic regression to calibrate the optimizers
and check if they are performing optimally.

CG

Optimization terminated successfully.
Current function value: 1.704291
Iterations: 23
Function evaluations: 50
Gradient evaluations: 48

L-BFGS
Current Function Value: 1.70429083405
Iternations:: 33
Function Evaluations: 70
BFGS
Optimization terminated successfully.
Current function value: 1.704291
Iterations: 11
Function evaluations: 13
Gradient evaluations: 13
Newton-CG
Warning: Desired error not necessarily achieved due to precision loss.
Current function value: 1.704291
Iterations: 9
Function evaluations: 81
Gradient evaluations: 129
Hessian evaluations: O

TNC
Current Function Value: 1.70429083405
Iterations: 11
Function Evaluations: 66
Performance of Optimizers with No Correlation
le-01
BFGS
L le-04 —e— LBFGS
- NCG
TNC
1le-07

0.0000 0.0025 0.0050 0.0075 0.0100
Time (Seconds)

Here, we can see, that as expected, BFGS algorithm gives us the best performance while the other optimizers
aren’t too far behind. We can see, however, that the L-BFGS algorithm does not perform as well in the sense
that we can see it takes much longer for L-BFGS to reach the same level of ||

nablaf||2 as compared to the other optimizers.

Case 1 - No Correlation within Data

In this specific case, we will be evaluating the performance of the optimizers when there is little to no
correlation in the data.
corr = 0.
if corr ==
n_samples, n_features = 10 ** 4, 10 *x* 3
np.random.seed(0)

X = np.random.randn(n_samples, n_features)
w = np.random.randn(n_features)
y = np.sign(X.dot(w))

X += 0.8 * np.random.randn(n_samples, n_features) # add noise

X+= corr # this makes it correlated by adding a constant term

X = np.hstack((X, np.ones((X.shapel[0], 1)))) # add a column of ones for intercept
alpha = 1.

conjugate gradient
print('CG")
timings_cg = []
precision_cg = []
w0 = np.zeros(X.shape[1])
start = datetime.now()
def callback(x0):
prec = linalg.norm(gradient(x0, X, y, alpha), 2)
precision_cg.append(prec)
timings_cg.append((datetime.now() - start).total_seconds())
callback(w0)
w = optimize.fmin_cg(loss, w0, fprime=gradient, args=(X, y, alpha), gtol=le-6,
callback=callback, maxiter=200)

L-BFGS
print ('L-BFGS')
timings_lbfgs = []
precision_lbfgs = []
w0 = np.zeros(X.shape[1])
start = datetime.now()
def callback(x0):
prec = linalg.norm(gradient(x0, X, y, alpha), 2)
precision_lbfgs.append(prec)
timings_lbfgs.append((datetime.now() - start).total_seconds())
callback(wO)
out = optimize.fmin_1_bfgs_b(loss, w0, fprime=gradient, args=(X, y, alpha),
pgtol=1e-10, maxiter=200, maxfun=250, factr=1e-30,
callback=callback, disp = 98)
print ("\t\tCurrent Function Value: {x}".format(x = out[1]))
print ("\t\tIternations:: {x}".format(x = out[2]['nit']))
print ("\t\tFunction Evaluations: {x}".format(x = out[2]['funcalls']))

BFGS

print ('BFGS')
timings_bfgs = []
precision_bfgs = []

w0 = np.zeros(X.shape[1])

start = datetime.now()
def callback(x0):
prec = linalg.norm(gradient(x0, X, y, alpha), 2)
precision_bfgs.append(prec)
timings_bfgs.append((datetime.now() - start).total_seconds())
callback(w0)
out = optimize.fmin_bfgs(loss, w0, fprime=gradient, args=(X, y, alpha), gtol=1le-10,
maxiter=50, callback=callback)

Newton—-CG

print ('Newton-CG')

timings_ncg = []

precision_ncg = []

w0 = np.zeros(X.shape[1])

start = datetime.now()

def callback(x0):
prec = linalg.norm(gradient(x0, X, y, alpha), 2)
precision_ncg.append (prec)
timings_ncg.append((datetime.now() - start).total_seconds())

callback(wO)

out = optimize.fmin_ncg(loss, w0, fprime=gradient, args=(X, y, alpha), avextol=1e-8,

callback=callback, maxiter=40)

Truncated Newton
print ('TNC")
timings_tnc = []
precision_tnc = []
w0 = np.zeros(X.shape[1])
start = datetime.now()
def callback(x0):
prec = linalg.norm(gradient(x0, X, y, alpha), 2)
precision_tnc.append (prec)
timings_tnc.append((datetime.now() - start).total_seconds())
callback(w0)
out = optimize.fmin_tnc(loss, wO, fprime=gradient, args=(X, y, alpha), callback=callback,
ftol = le-14, pgtol = 1le-17, xtol = 1e-10)
print ("\t\tCurrent Function Value: {x}".format(x = loss(out[0], X, y, alpha)))
print("\t\tIterations: {x}".format(x = len(precision_tnc)))
print ("\t\tFunction Evaluations: {x}".format(x = out[1]))

CG
Warning: Desired error not necessarily achieved due to precision loss.
Current function value: 3848.590812
Iterations: 24
Function evaluations: 49
Gradient evaluations: 48

L-BFGS
Current Function Value: 3848.59081206
Iternations:: 23
Function Evaluations: 28

BFGS

Warning: Maximum number of iterations has been exceeded.
Current function value: 3896.356013
Iterations: 50

Function evaluations: 76
Gradient evaluations: 76
Newton-CG
Optimization terminated successfully.
Current function value: 3848.590812
Iterations: 17
Function evaluations: 18
Gradient evaluations: 96
Hessian evaluations: O
TNC
Current Function Value: 3848.59081206
Iterations: 19
Function Evaluations: 79

The condition number for this system matrix is 12.1683226.

We can visualize the performance of the optimizers using R. The graph of their performance is given below,
where I have plotted the norm of gradient, ||V f||2 vs Time in Seconds taken to reach that value.

Performance of Optimizers with No Correlation

1le+03
1e+00 BFGS
i - CG
E -~ LBFGS
9 - NCG
TNC
1le-03

0.0 0.5 1.0 15 2.0
Time (Seconds)

From the above plot, it is evident that L-BFGS method gives us the best and the fastest result for completely
uncorrelated data. While other optimizers such as TNC, NCG, and CG also perform at a similar or comparable
rate, we can see that BFGS gives us rather disappointing results. It was surprising to see the poor performance
of BFGS when compared to L-BFGS, one would think that they should perfrom similarly but the poor
performance may be due to the memory requirement for estimating the Hessian of a function with a 1001
variables as input.

Next, we will add some correlation to the data and see how the performance of these optimizers changes.

Case 2 - Little Correlation within Data

In this specific case, we will be evaluating the performance of the optimizers when there is little correlation in
the data. Following are the results for the logistic regression using similar code as above.

CG
Warning: Maximum number of iterations has been exceeded.
Current function value: 3851.737877
Iterations: 200
Function evaluations: 511
Gradient evaluations: 511

L-BFGS
Current Function Value: 3851.73722757
Iternations:: 146
Function Evaluations: 175

BFGS

Warning: Maximum number of iterations has been exceeded.
Current function value: 3923.452454
Iterations: 50
Function evaluations: 85
Gradient evaluations: 85

Newton-CG

Optimization terminated successfully.

Current function value: 3851.737228
Iterations: 20

Function evaluations: 23

Gradient evaluations: 420

Hessian evaluations: O

TNC

Current Function Value: 3851.73722757
Iterations: 23
Function Evaluations: 110

The condition number for this system matrix is 47.4125047.

We can visualize the performance of the optimizers using R. The graph of their performance is given below,
where I have plotted the norm of gradient, ||V f||2 vs Time in Seconds taken to reach that value.

Performance of Optimizers with No Correlation

le+01
- BFGS
Eg 1le-02
— - LBFGS
- NCG
-0— TNC
le-05

Time (Seconds)

In this case, we can see that our top performers from the previous case have taken a back-seat and TNC and
NCG have performed better than most other cases. BFGS continues to perfrom poorly while L-BFGS has
proven slow in this regard as well.

In the last case that I will be analysing today, we will consider data that is heavily correlated within itself.

Case 3 - Heavy Correlation within Data

In this specific case, we will be evaluating the performance of the optimizers when there is heavy correlation
in the data.

CG
Warning: Maximum number of iterations has been exceeded.
Current function value: 3856.905869
Iterations: 200
Function evaluations: 506
Gradient evaluations: 506

L-BFGS
Current Function Value: 3856.90577325
Iternations:: 200
Function Evaluations: 236

BFGS

Warning: Maximum number of iterations has been exceeded.
Current function value: 3900.789613
Iterations: 50
Function evaluations: 88

Gradient evaluations: 88
Newton-CG
Optimization terminated successfully.
Current function value: 3856.768202
Iterations: 22
Function evaluations: 29
Gradient evaluations: 334
Hessian evaluations: O
TNC
Current Function Value: 3856.76820177
Iterations: 37
Function Evaluations: 175

The condition number for this system matrix is 2404.5492682.

We can visualize the performance of the optimizers using R. The graph of their performance is given below,
where I have plotted the norm of gradient, ||V f||2 vs Time in Seconds taken to reach that value.

Performance of Optimizers with No Correlation

1e+02
-o— BFGS
o - CG
=
g le-01 —o- LBFGS
—0— NCG
—o— TNC
1le-04

0 2 4 6
Time (Seconds)

Finally, for the last case, we can see that the performance of TNC and NCG are somewhat comparable but
L-BFGS, BFGS, and CG perfrom extremely poorly in this case. It is therefore certain that given the case
when the data has heavy correlation, L-BFGS, BFGS, and CG optimizers should be avoided.

Mathematical Analysis

In this section, we will now do a brief mathematical analysis to understand the result of the computations
that we made in the above sections.

10

We began our analysis with a small test using a simple 5 x 5 system of equations to check how the algorithms
perform in an ideal state - a reasonable number of rows and columns with a low condition number. We can
see that the BFGS algorithm performs the best in this case, as was expected since researchers today agree
that the BFGS algorithm method is “best” in practice (Notes 13, pg 213) which can be attributed to the low
dimensionality of the system being computed. But this property changes in the test example that I have
used in this paper.

In the first data sample, the condition number of the matrix is 12.17 which is relatively small for a matrix
that large. This number, however, is accompanied by heavy dimensionality - 1001 columns! BFGS is a good
candidate for optimization in low-dimensional problems, which is why, it fails to perform well in this case.
And with that condition number increasing in every other sample of data that we’ve used, we would expect
the BFGS algorithm to continue perform poorly within this paradigm, which is reflected in the results.

The L-BFGS algorithm is the best performer in this case because this combines the properties of the BFGS
algorithmic performance with a well-conditioned matrix and the L-BFGS property of performing better in
high dimenional problems by storing a limited number of vectors for computation. In some papers, it has
been noted that L-BFGS can be considered an extension of the Conjugate Gradient Method which uses fewer
evaluations to get a similar result - which can be confirmed in our evaluation results above. The L-BFGS
algorithm fails to perform well in data matrices which are ill-conditioned, as expected.

In the case of Conjugate Gradient Methods, we know that the implementaion performace of the algorithm
depends directly on the condition of the data matrix. We can see that the performance of the Conjugate
Gradient is competitive in the first sample with a well-conditioned matrix but that deteriorates consistently
for cases with ill-conditioning.

A Truncated Newton Method is an algorithm that performs comparibly to the L-BFGS but uses an imple-
mention of the Conjugate Gradient algorithm. In this case, the total effort is measured by the cumlative
sum of CG steps and to get good performance, we need to tune the CG stopping criterion, one that will give
us enough steps to find a good descent direction. Due to this criterion, the TNC performs sub-optimally
in the case where CG performs at its best - in the first case. However, in later stages, we can see that the
TNC outperforms other method and performs optimally with the Newton-CG in the last case with heavy
ill-conditioning.

Lastly, we will discuss the performance of the Newton-CG. Given my limited knowledge in this algorithm,
these methods are based on Newton iterations, coupled with conjugate-gradient iterations to solve the
resulting linear Newton-correction equation. The performance of this method is sub-optimal in the first case
where the there is little to no correlation in the data but the method outperforms other algorithms in the
other instances.

Final Thoughts

We can see from the implementation these methods that the dimensionality and the condition number play
an important role in determining the performance of an optimizer in the context of Logistic Regression. We
have compared some classic methods with some new and advanced methods and seen how each behave in a
number of different hypothetical cases.

References
e Ducci, John. Truncated Newton Method - Convex Optimization II Lecture

e Liu, Dong, and Jorge Nocedal. “ON LIMITED MEMORY BFGS METHOD FOR LARGE SCALE OP-
TIMIZATION.” Department of Electrical Engineering and Computer Science, Northwestern University.

11

e Yang, Jianke. “Newton-Conjugate-Gradient Methods for Solitary Wave Computations.” Journal of
Computational Physics, 2009.

e Yousef, Saad. “Iterative Methods for Sparse Linear Systems.” Society for Industrial and Applied
Mathematics.

12

	Introduction
	Optimizers Evaluated
	Data Used
	Functions Used
	Setting up Initial Experiment
	Case 1 - No Correlation within Data
	Case 2 - Little Correlation within Data
	Case 3 - Heavy Correlation within Data
	Mathematical Analysis
	Final Thoughts
	References

